Rotation invariant texture descriptors based on Gaussian Markov random fields for classification
نویسندگان
چکیده
منابع مشابه
Rotation invariant texture descriptors based on Gaussian Markov random fields for classification
Local Parameter Histograms (LPH) based on Gaussian Markov random fields (GMRFs) have been successfully used in effective texture discrimination. LPH features represent the normalized histograms of locally estimated GMRF parameters via local linear regression. However, these features are not rotation invariant. In this paper two techniques to design rotation invariant LPH texture descriptors are...
متن کاملTexture Classification Using Nonparametric Markov Random Fields
We present a nonparametric Markov Random Field model for classifying texture in images. This model can capture the characteristics of a wide variety of textures, varying from the highly structured to the stochastic. The power of our modelling technique is evident in that only a small training image is required, even when the training texture contains long range characteristics. We show how this...
متن کاملSorted random projections for robust rotation-invariant texture classification
This paper presents a simple, novel, yet very powerful approach for robust rotation-invariant texture classification based on random projection. The proposed sorted random projection maintains the strengths of random projection, in being computationally efficient and low-dimensional, with the addition of a straightforward sorting step to introduce rotation invariance. At the feature extraction ...
متن کاملRobust rotation invariant texture classification
The importance of texture analysis and classification in image processing is well known. However, many existing texture classification schemes suffer from a number of drawbacks. A large number of features are commonly used to represent each texture and an excessively large image area is often required for the texture analysis, both leading to high computational complexity. Furthermore, most exi...
متن کاملA New Technique for Texture Classification Using Markov Random Fields
This paper proposes, applies and evaluates a new technique for texture classification in digital images. The work describes, as far as possible in a quantitative way, the concept of texture in digital images. Furthermore, we developed an innovative model that allows classifying and characterizing texture in digital images, to be used as a useful tool in noninvasive inspection of visual surfaces...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Pattern Recognition Letters
سال: 2016
ISSN: 0167-8655
DOI: 10.1016/j.patrec.2015.10.006